Step of Proof: linorder_le_neg
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
linorder
le
neg
:
1.
T
: Type
2.
R
:
T
T
3.
a
:
T
.
R
(
a
,
a
)
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
6.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
7.
a
:
T
8.
b
:
T
9.
R
(
a
,
b
)
strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
)
latex
by ((((((InstHyp [
a
;
b
] 6)
CollapseTHENM (Unfold `strict_part` 0))
)
CollapseTHENM (ProveProp))
C
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t
C
) inil_term)))
latex
C
.
Definitions
P
&
Q
,
t
T
,
strict_part(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
,
False
,
A
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
origin